Атомная, водородная, нейтронная… Чем отличаются и как работают

Человечество за всю свою историю весьма преуспело в деле уничтожения себе подобных. Бесконечные войны, как территориальные, так и религиозные, собирают обширную дань – миллионы человеческих жизней. Лучшие умы планеты изобретают всё более изощренные способы умерщвления живого организма. Кульминацией этих изобретений стало оружие массового поражения (ОМП).

Несмотря на то, что исторически первым ОМП являлось химическое оружие, наибольший интерес всё же представляют собой ядерные боезапасы, так как они способны причинить чудовищный ущерб неприятелю. Их работа основана на гигантской энергии, которая разом высвобождается в результате мгновенно протекающих цепных ядерных или термоядерных реакций.

Атомная бомба

Еще в конце 19 века было обнаружено, что радиоактивные элементы (типа урана) хранят в своих атомах гигантскую энергию. Как только учёные в своих лабораториях смогли расщепить ядра таких атомов – вопрос о создании атомной бомбы был предрешен. Работы начались в США в самый разгар Второй мировой войны – в 1943 году.

Уже через два года всё было готово. Как всем известно из учебников истории, урановая бомба под прозвищем «Little Boy» была сброшена американцами в 1945 году на японский город Хиросиму, а спустя три дня плутониевый «Fat Man» полетел на Нагасаки.

Советский Союз начал разработку атомного оружия практически одновременно с США, но из-за войны работы были окончены позже: первое испытание состоялось в 1949 году.

https://avatars.mds.yandex.net/get-zen_doc/1222645/pub_5c783912ef8aae00b5afc35c_5c7839a9f8cb7f00b34a8e22/scale_1200

Как же работает атомная бомба?

Все мы из школы помним, что атом – мельчайшая частица вещества – состоит из ядра и вращающихся вокруг него отрицательно заряженных электронов. При этом само ядро состоит из положительных протонов и нейтральных нейтронов:

https://avatars.mds.yandex.net/get-zen_doc/203431/pub_5c783912ef8aae00b5afc35c_5c783973c65f5c00c8de37d9/scale_1200

Чаще всего число положительных протонов и отрицательных электронов совпадает, и атом остается электрически нейтральным. Но нас интересуют прежде всего нейтроны.

Дело в том, что число нейтронов в атоме одного и того же вещества может быть разным. Атомный номер вещества в таблице Менделеева будет один и тот же, а вот массовые числа – разные. Чем больше нейтронов будет иметь ядро, тем, масса будет больше. Такие вещества (с «нестандартным» количеством нейтронов) называются изотопами.

Изотопы встречаются в природе. Некоторые из них весьма стабильны. А другие изотопы (называемые радиоактивными) крайне нестабильны и склонны к распаду – когда изначально тяжелые ядра вещества теряют свои частицы, испуская их в окружающее пространство с выделением энергии. При этом излучение ядер может быть трех типов: альфа-лучи, бета-лучи и гамма-лучи. Последние – самые опасные, так как они способны выбивать электроны из атомов живых клеток, что приводит к их гибели (лучевая болезнь).

Важным свойством ядер изотопов является их способность к расщеплению под воздействием потоков нейтронов. При этом процессе выделяется энергия, а также новые нейтроны, которые действуют на соседние атомы, которые опять-таки распадаются, выделяя энергию и новые нейтроны. Этот процесс лавинообразно нарастает и называется цепной реакцией. Так и работает атомная бомба, выделяя в процессе расщепления ядер чудовищную энергию и смертельное излучение.

Почему же в природе не происходит цепной реакции? Дело в том, что для этого требуется, чтобы масса вещества превысила некую критическую величину – критическую массу. Если масса вещества меньше критической массы, то испускаемых им нейтронов будет не хватать для запуска цепного процесса.

Теперь рассмотрим конструкцию атомной бомбы в самом простом варианте. В корпус боеприпаса помещается две части изотопа (например, уран-235), разделенные друг с другом – так, чтобы каждая из частей имела докритическую массу, но в сумме масса превышала критическую. За одной такой частью располагается обычный тротиловый заряд.

https://avatars.mds.yandex.net/get-zen_doc/965902/pub_5c783912ef8aae00b5afc35c_5c7839daef8aae00b5afc363/scale_1200

Тротиловый заряд подрывается, и одна часть урана с огромной силой соединяется с другой, образуя уже критическую массу. Далее следует цепная реакция с огромным выделением энергии и сопутствующими ей поражающими факторами, уничтожающими всё вокруг на многие километры.

Почему нельзя соединить оба куска просто так, без тротилового заряда? Дело в том, что в этом случае (при медленном соединении обеих частей вещества) вся энергия, выделенная при обмене нейтронами, будет уходить в нагрев. Чем ближе друг к другу будут обе части, тем больше будут они нагреваться и в конце концов расплавятся сами и расплавят всю конструкцию бомбы.

Нам же необходимо получить взрывной рост плотности энергии. Этого можно достичь только при очень быстром сближении частей – таком быстром, чтобы возрастание потока нейтронов не успевало бы за скоростью сближения.

Данный метод именуется «пушечной схемой» и описан весьма условно. «Little Boy» работал именно так. Ныне этот метод не применяется, а используются более сложные схемы…

Водородная бомба

Увеличение мощности обычной ядерной бомбы упирается в некий потолок, ограниченной мощностью в несколько десятков килотонн. Дело в том, что цепная реакция при большой сверхкритической массе не успевает затронуть всё вещество – начавшееся практически мгновенно выделение энергии успевает разбросать большую часть вещества до того, как оно вступит в цепную реакцию. Необходимо повысить мощность взрыва другим методом. И решение было найдено: в дело вступил термоядерный синтез, на сегодняшний день самый мощный тип энергии. Управляемый синтез нам не подвластен до сих пор, а неуправляемый (взрыв) – уже давно освоен. Первая в мире водородная бомба была взорвана СССР на Семипалатинском полигоне в 1953 году…

https://avatars.mds.yandex.net/get-zen_doc/230574/pub_5c783912ef8aae00b5afc35c_5c7839ed7c061c00b37db022/scale_1200

Термоядерный синтез можно наблюдать в любой горячей звезде: в условиях чудовищных температур и давления легкие ядра водорода приобретают такую огромную кинетическую энергию движения, что объединяются друг с другом, образуя, естественно, более тяжелые ядра – ядра гелия. При этом часть ядер водорода испускается в виде потока высокой энергии.

В водородной бомбе применяется не чистый водород, а дейтерид лития-6, содержащий в себе изотоп водорода дейтерий и изотоп лития, служащий для выделения еще одного изотопа водорода – трития. Вот такая сложная схема. Но дальше будет еще сложнее.

Дейтерид лития-6 помещают в контейнер, изготовленный из урана-238, а рядом размещают обычный ядерный заряд небольшой мощности. Этот заряд нужен для инициации термоядерной реакции.

https://avatars.mds.yandex.net/get-zen_doc/987771/pub_5c783912ef8aae00b5afc35c_5c783a4aa71ea800b38e5e79/scale_1200

Ядерный заряд подрывается, контейнер мгновенно превращается в плазму, обеспечивая необходимые нам давления и температуру. Нейтроны, излучаемые ураном-238, вступают в реакцию с дейтеридом лития-6, в результате чего получается тритий.

Дейтерий и тритий взаимодействуют между собой, образуя более тяжелые ядра с высвобождением гигантской энергии.

По сути, мощность водородной бомбы почти ничем не ограничена.

Нейтронная бомба

Многие помнят детский «садистский» стишок:

Мальчик нейтронную бомбу нашел,
Назавтра он с нею в школу пошел,
Долго смеялось потом ГорОНО,
Школа стоит, а в ней – никого.

Такой стереотип работы нейтронной бомбы возник еще во времена СССР из-за непонимания принципа ее работы. Среди обывателей существовало мнение, что нейтронная бомба убивает всё живое, оставляя все постройки и технику целыми. Это не так.

https://avatars.mds.yandex.net/get-zen_doc/1348874/pub_5c783912ef8aae00b5afc35c_5c783a25f8cb7f00b34a8e29/scale_1200

Нейтронная бомба является разновидностью обычной атомной бомбы. В 1970-х годах ученым удалось добиться того, чтобы наибольшая часть энергии взрыва (80%) уходила в виде нейтронного излучения, а остальные поражающие факторы были значительно уменьшены. Это обеспечивается дополнительным блоком из бериллия, который, собственно, и является источником жесткого и мощного нейтронного излучения. Спрятаться от нейтронного излучения гораздо сложнее, чем от других видов излучений – его проницаемость очень высокая. Но нейтронное оружие имеет и недостатки.

Во-первых, земная атмосфера очень хорошо поглощает нейтронное излучение, из-за чего теряется смысл делать боеприпасы высокой мощности.

Во-вторых, в военной технике стали использовать многослойную броню с добавлением присадок на основе бора – очень хорошего поглотителя нейтронов.

В-третьих, нейтронные бомбы из-за небольшой мощности нельзя отнести к стратегическому оружию. А существующее тактическое вооружение лишено многих недостатков, присущих нейтронному оружию.

Всё это привело к тому, что сегодня нейтронные бомбы практически не состоят на вооружении ядерных стран.

Жми «Нравится» и получай только лучшие посты в Facebook ↓

Атомная, водородная, нейтронная… Чем отличаются и как работают